
ROBOTICS

Application manual
Production Framework

Trace back information:
Workspace 23B version a10
Checked in 2023-06-19
Skribenta version 5.5.019

Application manual
Production Framework

Version 1.1

Document ID: 3HAC085600-001
Revision: A

© Copyright 2023 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2023 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...

91 Introduction to Production Framework
91.1 System overview ...

101.2 Orders ..
111.3 The production loop ...
131.4 Events ...
141.5 Component architecture ...
151.5.1 Component: Order Library ..
161.5.2 Component: Event Library ..
171.5.3 Component: Order Controller ..
181.5.4 Component: Logger ...
191.5.5 Component: Progress Tracer ...

212 Installation
212.1 Prerequisites ..
222.2 Installation options ..

233 Default components
243.1 Default Order Library ...
283.2 Default Event Library ...
303.3 Default Order Controller ...
333.3.1 Input signals ..
353.3.2 Output signals ..
383.3.3 Example PLC interaction sequences ...
403.4 Default Logger ..
423.5 Default Progress Tracer ..

434 Reference: Base framework RAPID instructions
434.1 PFAbortCycle – Aborts the current cycle ..
444.2 PFClearQueue – Clears the order queue ..
454.3 PFCurrentOrder – Retrieves information about the current order
474.4 PFCurrentState – Retrieves information about the current production loop state
484.5 PFEngine – Starts the production loop ..
504.6 PFEngineError – Generates an engine error ...
524.7 PFEngineErrorCode – Retrieves the last generated engine error code
534.8 PFExitEngine – Exits the production loop ..
544.9 PFIsAborted – Checks whether the current order is aborted
554.10 PFLastOrderCompletion – Retrieves information about the latest order
574.11 PFLog – Logs a message ..
584.12 PFPlaceOrder – Places an order ..
614.13 PFProgressReport – Generates a Progress Tracer report ...

635 Base framework RAPID data types and constants
635.1 PFBaseState – Production loop state ..
645.2 PFEventType – Event type for production loop / system events
665.3 PFLogLevel – Log level for filtering logs ..
675.4 PFOrderCompletionState – Completion state of last order placed
685.5 PFProgressReportType – Identifier for progress reports ...
725.6 PFProgressSource – Source of progress reports ...
735.7 PFResult – General response data type ...
745.8 Engine error codes ..

776 Miscellaneous
776.1 Running custom code when PFEngine is called ..

Application manual - Production Framework 5
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

Table of contents

786.2 Running custom code before/after any event type ...
796.3 Setting Idle state cyclic event interval ..
806.4 Disabling the Progress Tracer component ...

817 PFView - FlexPendant interface

838 Advanced: Custom components
838.1 Templates ..
848.2 Replacing a component ..

6 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This manual describes the option Production Framework for RobotWare 7 with
OmniCore.
It contains information regarding both basic out-of-the-box usage andmore detailed
information on how to customize certain functionality by replacing framework
components with custom implementations.

Who should read this manual?
This manual is intended for:

• Robot programmers
• System integrators
• Function package developers

Prerequisites
The reader should have a basic knowledge of:

• RAPID programming
• System parameter configuration

For more advanced usage, such as implementing custom framework components,
a more advanced knowledge of RAPID programming might be useful.

References

Document IDReference

3HAC065038-001Technical reference manual - RAPID Instructions, Functions and
Data types

Revisions

DescriptionRevision

Released with RobotWare 7.10.A

Application manual - Production Framework 7
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

Overview of this manual

This page is intentionally left blank

1 Introduction to Production Framework
1.1 System overview

What is Production Framework?
In short, Production Framework is a customizable modular platform for order based
external control of an ABB robot.
It shares some features with the older product Production Manager but is generally
more focused on providing a flexible and customizable platform rather than a
provided-as-is fixed solution.
The main purpose of the framework is to handle orders from an external source,
typically a PLC in charge of managing the various equipment in the cell. These
orders are then executed by the framework by running user-specified RAPID
routines.

Base framework features
The framework has built-in support for:

• Safely transferring orders from the TRAP execution level to normal execution
level

• A state-based production loop
• Events, which can be used by the programmer to run code at various times

in the production loop, or when certain system events happen
• Multi-tasking and MultiMove abstraction layer for easier (compared to using

the basic RAPID API) synchronization of orders and events that are running
on several RAPID tasks

• Aborting orders
• Enqueueing orders
• Customizable order constraints
• General logging
• Traceability
• Running independently on any RAPID task, including background tasks

Customization
To facilitate the usage of the framework in any system, some behavior – such as
the PLC protocol used to control the orders, or the way how orders are defined –
can be changed by replacing framework components. These custom components
are typically implemented as RAPID modules and are using a well-defined and
documented interface towards the base framework.
A set of default components are provided as part of Production Framework and
can optionally be installed. For many use cases, these basic variants will be
sufficient.
For more information regarding the component architecture, see Component
architecture on page 14.

Application manual - Production Framework 9
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.1 System overview

1.2 Orders

Orders
Orders are what drive Production Framework.
An order is the intent to have the robot do a specific pre-defined job without loading
a separate RAPID program. The origin of the orders is decided by the
implementation of the Order Controller component, but typically the orders come
from an external source. The default Order Controller component takes in orders
from the I/O system using a signal protocol. A PLC (Programmable Logic Controller)
is often used to give these orders.
Using a custom implementation of the Order Controller component, orders could
come virtually from anywhere. For example from a network socket, from user
interaction with the teach pendant, or from a RAPID background task reading an
order schedule from a file.
Each order from the Order Controller comes in the form of an order code. This
code is used to fetch more detailed information about the order (from the Order
Library component), e.g. the RAPID procedure that should be executed. More on
this in Component architecture on page 14.

Service orders
There are two types of orders, normal orders and service orders. Normal orders
are occasionally referred to as parts.
Service orders are typically used to run equipment maintenance routines, or orders
of a more manual nature, such as putting the robot in a certain pose for inspection.
The order code for the two types can overlap, so it is permitted to have a normal
order with the same order code as a service order. However, when placing a service
order, the service status of the order is explicitly indicated by the Order Controller.
When orders are queued, service orders take precedence over normal orders.

10 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.2 Orders

1.3 The production loop

Traversing the states
Production Framework is a state-based framework. One of its most central concepts
is a state machine which in this manual is referred to as the production loop.

xx1800002238

The framework is always in a single production loop state on each RAPID task.
The tasks are independent from a framework point of view, which means that each
task has its own instance of the framework, including a current production loop
state.
Most states have one or more associated event types. User events of a certain
type will be executed during the corresponding state. For more information about
events, see Events on page 13.
Initially, after resetting the Program Pointer, the framework is in a START state.
This state is active until the task calls the routine PFEngine to start the production
loop engine.
When the engine is started, the state is changed to INIT1. By utilizing events, this
state can be used to initialize equipment or run other code that needs to be executed
before the framework is ready to receive its first order.
INIT1 is followed by INIT2, which is similar. However, the INIT2 state will also be
entered after an abort.
After the two initialization states, the production loop will enter the IDLE state and
wait for orders. In all other states, the framework is considered busy. The framework
will remain in the IDLE state until a new order is successfully received.

Continues on next page
Application manual - Production Framework 11
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.3 The production loop

When an order has been placed, the production loopwill enter thePRE-EXECUTION
EVENTS state. Here events will be fired, executing code that should be run before
each order.
When all pre-execution events have been fired, the framework will continue to the
state EXECUTEORDER. As the name suggests, while in this state the actual order
will be executed. The order corresponds to a user-defined RAPID procedure.
Following the order execution is a POST-EXECUTION EVENTS state, similar to
the PRE-EXECUTION EVENTS. When all declared events in this state have been
fired, the production loop goes back to the IDLE state, accepting new orders.
An abort can be requested, either directly from RAPID (see the routine
PFABortCycle in PFAbortCycle – Aborts the current cycle on page 43, and
PFIsAborted in PFIsAborted – Checks whether the current order is aborted on
page54), or by using the Order Controller (the default Order Controller has a digital
input signal for this).
When an order has been aborted, the state will change to ABORT. When all events
for this state have been fired, the state is changed back to INIT2.
Normally the PFEngine routine never finishes, hence the name production loop.
However, it can be requested to exit itself by calling the PFExitEngine routine
(see PFExitEngine – Exits the production loop on page 53). After exiting, the state
will be EXITED until the engine is started again or the Program Pointer is moved
to main.
The current state of the production loop can be retrieved by using the RAPID routine
PFCurrentState (see PFCurrentState – Retrieves information about the current
production loop state on page 47).

12 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.3 The production loop
Continued

1.4 Events

User events
The user can declare events which will be fired either when some production loop
states are entered, or when some situations arise in the system, e.g. the controller
is stopped or the user changes controller operation mode. When fired, a
user-specified RAPID procedure for each event is executed.
How events are declared depends on the Event Library component. The default
Event Library allows the user to declare events as data variables in RAPID which
will be automatically detected during runtime. The default Event Library is further
described in Default Event Library on page 28.
A full list of available event types is available in PFEventType – Event type for
production loop / system events on page 64.

Application manual - Production Framework 13
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.4 Events

1.5 Component architecture

Topology
As mentioned earlier, the framework consists of a base component and a handful
of replaceable components. Each replaceable component has a default
implementation that handles its area of responsibility in a predefined way. If this
behavior cannot fulfill all requirements, it can be removed and replaced by a user
implemented variant.

xx1800002239

Each default component has no direct dependency on any other component except
on the base component. This design allows for easy component replacement. If
custom components are implemented, nothing prevents them from having
dependencies on each other, although it is recommended to avoid it if possible,
since this practice might make component recycling more difficult.
The RAPID API used to communicate with the base component is well defined and
component module templates with empty API routines can be can be installed to
get started.
For more information on how to implement and use custom components, see
Advanced: Custom components on page 83.
A short description of the replaceable component class responsibilities is listed
below. The behavior of the default components is described inDefault components
on page 23.

Continues on next page
14 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.5 Component architecture

1.5.1 Component: Order Library

Responsibilities
The Order Library component is responsible for fetching order information.
Given an order code and order type (service or not) by the base component, the
Order Library first confirms that the corresponding order is known, and then provide
detailed information about that order.
This information includes a description, a name of the procedure that should be
executed, and details regarding synchronization between several
framework-managed RAPID tasks.
It is also the Order Library’s responsibility to validate orders. This means deciding
whether the framework is permitted to run an order right now. If the Order Library
finds any reason to deny the framework permission to run the order, it can refuse
and provide a reason as a string.
Each order will be validated twice, when it is placed, and then once again when
the production loop enters the EXECUTE ORDER state.
For information about the default Order Library, see Default Order Library on
page 24.

Application manual - Production Framework 15
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.5.1 Component: Order Library

1.5.2 Component: Event Library

Responsibilities
The Event Library component is similar to the Order Library, except that it handles
information regarding user events instead of orders.
It is the responsibility of the Event Library component to keep track of declared
events, and in which sequencing they should be executed during firing of each
event type.
For information about the default Event Library, see Default Event Library on
page 28.

16 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.5.2 Component: Event Library

1.5.3 Component: Order Controller

Responsibilities
The Order Controller component is the front end to the framework during runtime.
It is the responsibility of the Order Controller to receive orders, most likely from
outside the controller, and place them using the API on the base framework.
It also falls upon the Order Controller to handle feedback from the base framework
and, if required, forward that information to the order giver. This feedback includes
status updates regarding an order, such as whether it was successful or not. Maybe
the order was refused or perhaps it could not be placed since the order code was
unknown. Such information needs to be propagated to the PLC, user or other
controlling mechanism.
For information about the default Order Controller, see Default Order Controller
on page 30.

Application manual - Production Framework 17
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.5.3 Component: Order Controller

1.5.4 Component: Logger

Responsibilities
The Logger component is a generic logging facility which can be used by the user
to do any kind of logging during runtime (via the base framework). See the routine
PFLog in PFLog – Logs a message on page 57.
The Logger supports a set of log levels, e.g. Information, Warning, Error, Debug
and Progress. Each log entry must use one of these defined levels. This information
can then be used by to Logger component to filter or separate the different kinds
of information.
The Progress log level is used by the default Progress Tracer component to log
each progress report, see Default Progress Tracer on page 42.
For information about the default Logger, see Default Logger on page 40.

18 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.5.4 Component: Logger

1.5.5 Component: Progress Tracer

Responsibilities
The Progress Tracer component has no intrinsic responsibility by itself. However,
the base framework will periodically send Progress Reports to it, which a custom
Progress Tracer can use for any purpose desired.
There are many reports generated by the base framework during the traversal of
the production loop, and it is also possible for user code to generate reports via
the base framework. See the routine PFProgressReport in PFProgressReport –
Generates a Progress Tracer report on page 61.
The reports are similar to log entries, but each report type has a unique identifier,
and all variable data are sent as variables. This enables a custom Progress Tracer
to react and run code when specific things happen.
The Progress Reports could be considered as more fine-grained event types.
The default Progress Tracer does nothing, except logging the reports on the
Progress log level. See Default Progress Tracer on page 42.

Application manual - Production Framework 19
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

1 Introduction to Production Framework
1.5.5 Component: Progress Tracer

This page is intentionally left blank

2 Installation
2.1 Prerequisites

RobotWare options
Production Framework requires a license for:

• 3404-1 Production Framework

The Production Framework add-in
Production Framework is not a part of the RobotWare distribution, instead it is
distributed as a RobotWare add-in. This allows for independent release cycles not
dependent on the RobotWare releases.
Any version of the product can be downloaded from the RobotStudio RobotApps
Gallery.
During installation of the system with Installation Manager, add the downloaded
add-in as a separate product next to RobotWare.

Application manual - Production Framework 21
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

2 Installation
2.1 Prerequisites

2.2 Installation options

Add-in installation options
Given that the Production Framework add-in has been downloaded and selected
as an additional product in Installation Manager, the following options will be
available under the Applications options tab.

xx2200001373

DescriptionOption

Required for all Production Framework setups.Production Framework

The optional FlexPendant application (see PFView - FlexPendant
interface on page 81).

Framework GUI

Default implementation of the Order Controller component (see
Default Order Controller on page 30). Unless a custom Order
Controller will be used, this option is required.

Default Order Controller

Default implementation of the Order Library component (see
Default Order Library on page24). Unless a customOrder Library
will be used, this option is required.

Default Order Library

Default implementation of the Event Library component (see
Default Event Library on page28). Unless a custom Event Library
will be used, this option is required.

Default Event Library

Default implementation of the Progress Tracer component (see
Default Progress Tracer on page 42). Unless a custom Progress
Tracer will be used, this option is required.

Default Progress Tracer

Default implementation of the Logger component (see Default
Logger on page 40). Unless a custom Logger will be used, this
option is required.

Default Logger

If this option is selected, RAPID templates for custom components
(see Templates on page 83) will be copied to HOME:/PFTem-
plates/ during installation. Keep in mind that existing files will be
overwritten.

Custom component tem-
plates

22 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

2 Installation
2.2 Installation options

3 Default components
Overview

This section describes the default implementation of the required components for
Production Framework. This set of components are distributed together with the
base framework and can optionally be installed.
The default components are designed for a generic use case and can be used for
many projects, but not all.
The default components have no direct dependencies on each other, so they can
be used in any constellation combined with custom components.
For a short description of the responsibilities of each component, see Component
architecture on page 14.

Continues on next page
Application manual - Production Framework 23
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components

3.1 Default Order Library

Short description
The default Order Library implementation handles order declarations by letting the
user declare variables of the predefined RECORD datatypes partdata and
servicedata.
The user only needs to declare these variables as global variables (VAR or PERS),
and initialize them with relevant data. The default Order Library will find them
automatically during runtime.
Order codes are restricted to numerical values.

The partdata datatype
The partdata datatype is used for declaring available normal (non-service) orders.
The name is inherited from the older product Production Manager.

RECORD partdata

dnum plcCode;

string description;

string procName;

string tasklist;

string validAt;

ENDRECORD

First, a plcCode is required. This is almost the same thing as an order code – a
unique code for identifying this specific order. However, although the base
framework supports using a string as order code, a dnum is used here instead.
The default Order Library (and the default Order Controller) handles order codes
as numeric values, not full strings. However, although the base framework supports
using a string as order code, a dnum is used here instead. The default Order Library
(and the default Order Controller) handles order codes as numeric values, not full
strings. This is to enable easier communication over an I/O signal protocol.
The plcCode element must be unique. If several order declarations share the same
plcCode, an engine error (PF_ERR_DUPLICATE_ORDER_NUM) will be generated
during runtime when the order is placed.
The description element should contain a useful description or name of the
order.
The procName element shall contain the name of the RAPID procedure that should
be called when executing the order.
If synchronization (at start and end of the order execution) of this order with another
order on another RAPID task is required, the tasklist element shall contain a
list of the participating RAPID tasks. The task names must be separated by either
a ‘,‘ (comma) character, a ‘:‘ (colon) character or a ‘;‘ (semicolon) character. E.g.
"T_ROB1,T_ROB2" or "T_ROB1;MyTask1". This list must be identical in all
participating orders/tasks, including the sequencing of the task names.

Continues on next page
24 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.1 Default Order Library

Note that for the synchronization to work, there must be orders declared in each
participating task, which all shall run the framework. All tasks must start executing
the orders by themselves. Only the synchronization is automatic.
If synchronization is not needed, tasklist should contain an empty string.
The validAt string is used for custom order validation, more about this below. If
custom order validation is not used, then this argument has no effect, i.e. it can be
set to an empty string.
An example declaration of two orders, here without synchronization:

MODULE MyModule

VAR partdata myOrderA

:= [100,"My first order","MyProc1","",""];

VAR partdata myOrderB

:= [200,"My second order","MyProc2","",""];

PROC MyProc1()

! Code to run when executing the first order

ENDPROC

PROC MyProc2()

! Code to run when executing the second order

ENDPROC

ENDMODULE

Note that the partdata declarations do not need to be in the same RAPIDmodule
as the procedure definitions.

The servicedata datatype
The servicedata datatype is very similar to partdata, although it is used for
declaring service orders.

RECORD servicedata

dnum plcCode;

string description;

string procName;

string tasklist;

string validAt;

ENDRECORD

All elements in the servicedata datatype have the same function as the
corresponding elements in partdata.

Order validation
The default Order Library does not by itself support active validation as described
inComponent: Order Library on page15. All orders will be accepted automatically.
However, it provides a simple possibility for customization without the need for a
complete custom Order Library component.

Continues on next page
Application manual - Production Framework 25
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.1 Default Order Library

Continued

To take advantage of this functionality, declare a global RAPID routine with an
argument list like the example below.

PROC MyCustomValidation(

bool preCheck,

string orderCode,

bool service,

string validAt,

INOUT PFResult result,

INOUT string refusedReason

)

VAR bool isValid;

! Validation code here

! ...

IF isValid THEN

! Ok to run order

result := PF_RESULT_OK;

ELSE

! Order is refused, reason code 100

refusedReason := "100"

result := PF_RESULT_REFUSED;

ENDIF

ENDPROC

Then, to activate this hook routine, set the global variable pfExtValidationHook
to the name of the routine:
pfExtValidationHook := "MyCustomValidation";

This can be done from anywhere; the main routine, anytime during runtime, or
preferably from the PFInitEngineHook routine described in Running custom
code when PFEngine is called on page 77.
The arguments are:

• preCheck, a bool with the value TRUE if this is the validation request
performed when the order is placed, before any events are executed. FALSE
if this is the validation request performed after pre-execution events, right
before the order is about to be executed.

• orderCode, the order code associated with the order.
• service, set to TRUE if the order is a service order, otherwise FALSE.
• validAt, from the corresponding field in the partdata or servicedata

instance. This is used for the hook routine to make a validation decision. The
value could be anything that fit into a string; a positioner station number, a
tool state or anything other kind of restriction or combination of restrictions
as defined by this customization.

• result, an INOUT variable where the result of the validation should be
stored. This should be set to PF_RESULT_OK if the order is valid,

Continues on next page
26 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.1 Default Order Library
Continued

PF_RESULT_REFUSED if not valid, or possibly PF_RESULT_ERROR if there is
a problem with the validation process itself.

• refusedReason can optionally be used in combination with setting the result
to PF_RESULT_REFUSED. The value should be a reason for refusing the order.
Any string can be used. It is forwarded to the Order Controller component
when the latter is notified that the order was refused. If the string can be
parsed as an integer, the default Order Controller will set a group output
signal to that number. See Default Order Controller on page 30 for more
information.

Application manual - Production Framework 27
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.1 Default Order Library

Continued

3.2 Default Event Library

Short description
The default Event Library implementation handles user event declarations by letting
the user declare variables of the predefined RECORD datatype eventdata.
The user only needs to declare these variables as global variables (VAR or PERS),
and initialize them with relevant data. The default Order Library will find them
automatically during runtime.

The eventdata datatype
The evType element signifies the event type. This is what decides the condition
for when the event should be fired. Available event types are listed in PFEventType
– Event type for production loop / system events on page 64.
The eventdata datatype is used for declaring events of a specified event type.

RECORD eventdata

PFEventType evType;

dnum sequence;

string description;

string procName;

string tasklist;

ENDRECORD

The evType element signifies the event type. This is what decides the condition
for when the event should be fired. Available event types are listed in PFEventType
– Event type for production loop / system events on page 64.
The sequence element is used to help the default Event Library with the sequence
ordering in case several event declarations share the same event type. Declared
events of the same event type will be fired according to sequence number,
beginning on the lower end, progressing to higher values. Any positive number
that can be held by a dnum can be used. Using identical numbers will result in
undefined behavior, all of those events will be fired, but the sequencing is not
guaranteed to be the same each time.
The description element should contain a useful description or name of the
event.
The procName element shall contain the name of the RAPID procedure that should
be called when firing the event.
If synchronization (at start and end of the order execution) of this event with another
event on another RAPID task is required, the tasklist element shall contain a
list of the participating RAPID tasks. The task names must be separated by either
a ',' (comma) character, a ':' (colon) character or a ';' (semicolon) character. E.g.
"T_ROB1,T_ROB2" or "T_ROB1;MyTask1". This list must be identical in all
participating events/tasks, including the sequencing of the task names.
Note that for the synchronization to work, there must be events declared in each
participating task, which all shall run the framework. Each task must meet the event
type firing condition by itself. Only the synchronization is automatic.

Continues on next page
28 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.2 Default Event Library

If synchronization is not needed, tasklist should contain an empty string.
An example declaration of two pre-execution events:

MODULE MyModule

VAR eventdata myEventA

:= [PF_EV_PREPART,10,"EvA","FireEv1",""];

VAR eventdata myEventB

:= [PF_EV_PREPART,5,"EvB","FireEv2",""];

PROC FireEv1()

TPWrite "A";

ENDPROC

PROC FireEv2()

TPWrite "B";

ENDPROC

ENDMODULE

Before a non-service order (also called a part) is executed, events of the type
PF_EV_PREPART are fired. Both events declared above will be executed according
to the sequence numbers, printing B and then A.

Application manual - Production Framework 29
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.2 Default Event Library

Continued

3.3 Default Order Controller

Short description
The default Order Controller implements a basic I/O signal protocol for taking
orders from an external source. The signals used can be configured in the system
parameters, topic Process.
Order codes are restricted to numerical values.

Configuration
To access the PROC configuration from RobotStudio, locate the Configuration
button under the Controller ribbon tab. Click on Process as shown in the image
below.

xx1800002240

Select the type PF OrderController.

xx1800002241

Continues on next page
30 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3 Default Order Controller

The default Order Controller needs a separate configuration for each task that
should be managed by the framework. After installation, one configuration is
automatically set up for the T_ROB1 task, using a set of default signals.

xx1800002242

These default signals can be mapped to a desired I/O device in the I/O System
configuration.

Continues on next page
Application manual - Production Framework 31
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3 Default Order Controller

Continued

Alternatively, the default Order Controller can here be configured to use other
signals.

Note

If using the framework on more than one task, each task needs its own
configuration, and its own set of signals.

Note

The default set of output signals are configured to use the PFOCSafeLevel I/O
safe level. This safe level is installed with the default Order Controller and will
cause the output signals to keep their values while/after restarting the controller.
PFOCSafeLevel can optionally be used on manually configured signals.

Other than signal selection, the configuration also has an option for I/O Safe. If set
to Yes, input events from the input signals will be enqueued during program stop
and executed when the program is resumed. A maximum of one event from each
input signal will be enqueued.
If set to No, inputs are ignored when the program is stopped.

Continues on next page
32 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3 Default Order Controller
Continued

3.3.1 Input signals

RunPart
Default signal: PFdiRunPart
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will request a normal order
(part) to be placed. This signal should only be set when the Idle digital output is
set.
In addition, status signals will be cleaned up, i.e. the signals Success, Invalid,
Error, Aborted, Refused and RefusedReson will be set to 0.
The order number will be read from the OrderCode group input. See the output
signals for the various results of making an order.

EnqueuePart
Default signal: PFdiEnqPart
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will request a normal order
(part) to be placed. If the production loop is busy with another order, this order will
be enqueued. Only one normal order can be in the queue at any given time. If
another normal order already is in the queue, it will be replaced.
In addition, status signals will be cleaned up, i.e. the signals Success, Invalid,
Error, Aborted, Refused and RefusedReson will be set to 0.
The order number will be read from the OrderCode group input. See the output
signals for the various results of making an order.

RunService
Default signal: PFdiRunService
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will request a service order
to be placed. This signal should only be set when the Idle digital output is set.
In addition, status signals will be cleaned up, i.e. the signals Success, Invalid,
Error, Aborted, Refused and RefusedReson will be set to 0.
The order number will be read from the OrderCode group input. See the output
signals for the various results of making an order.

EnqueueService
Default signal: PFdiEnqService
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will request a service order
to be placed. If the production loop is busy with another order, this order will be
enqueued. Only one service order can be in the queue at any given time. If another
service order already is in the queue, it will be replaced. Enqueued service orders
will be executed before any enqueued normal order (part).

Continues on next page
Application manual - Production Framework 33
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.1 Input signals

In addition, status signals will be cleaned up, i.e. the signals Success, Invalid,
Error, Aborted, Refused and RefusedReson will be set to 0.
The order number will be read from the OrderCode group input. See the output
signals for the various results of making an order.

ClearQueue
Default signal: PFdiClearQ
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will request any enqueued
orders (both service and part) to be removed from the queue. This means that they
will not be executed.

Abort
Default signal: PFdiAbort
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will request the current
order to be aborted. During an abort, any enqueued orders will be cancelled. For
more information about aborting a cycle, see the PFAbortCycle routine in
PFAbortCycle – Aborts the current cycle on page 43.

OrderCode
Default signal: PFgiOrderCode
Type: Group input
This group input should be set to the order code (in numeric form) of the order,
normal or service, that should be used when setting any of the digital inputs
RunPart, EnqueuePart, RunService or EnqueueService.

ResetStatus
Default signal: PFdiResetStatus
Type: Digital input
Setting this digital input to 1 from a previous state of 0 will clean up the status
signals, i.e. the signals Success, Invalid, Error, Aborted, Refused and
RefusedReson will be set to 0.
This has no effect on the function of the framework, but is rather a conveniece for
cases where the PLC need to reset these signals prior to requesting a new order.

34 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.1 Input signals
Continued

3.3.2 Output signals

PartInQueue
Default signal: PFgoPartInQ
Type: Group output
If a normal order (part) is currently in the queue, its numeric order code will be
outputted here.

ServiceInQueue
Default signal: PFgoServiceInQ
Type: Group output
If a service order is currently in the queue, its numeric order code will be outputted
here.

Idle
Default signal: PFdoIdle
Type: Digital output
This digital output is set to 1 when the production loop is idle and ready to accept
new orders. If the output is set to 0, the production loop is currently busy.

Executing
Default signal: PFdoExecuting
Type: Digital output
This digital output is set to 1 when the production loop is currently executing an
order (not including post/pre-execution events). When the output is set to 0, the
production loop is either idle or is executing events.

Success
Default signal: PFdoSuccess
Type: Digital output
This digital output is set to 1 when the last executed cycle was successful (from a
framework point of view). It is set to 0 again when a new order is requested or
when the ResetStatus signal is set to 1. Note that it is the last executed, not last
ordered cycle. This difference is important if the queue functionality is used.

Invalid
Default signal: PFdoInvalid
Type: Digital output
This digital output is set to 1 when an order is requested, but the order code is
invalid (unknown). It is set to 0 again when a new order is requested or when the
ResetStatus signal is set to 1.

Refused
Default signal: PFdoRefused

Continues on next page
Application manual - Production Framework 35
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.2 Output signals

Type: Digital output
This digital output is set to 1 when an order is refused by the Order Library
component. Thismeans that the order code exists, but some condition for executing
it is not met. It is set to 0 again when a new order is requested or when the
ResetStatus signal is set to 1.
Note that the default Order Library will never refuse an order.

RefusedReason
Default signal: PFgoRefusedReason
Type: Group output
This group output is set in combination with the digital output Refused. If the reason
for refusal - as given by the Order Library - is a numerical value, it will be outputted
here.

Error
Default signal: PFdoError
Type: Digital output
This digital output is set to 1 when an order is requested, and one of the following
conditions arise:

• The production loop was not idle, and the queue functionality was not used.
• The base framework responded to the request in an unexpected way.

It is set to 0 again when a new order is requested or when the ResetStatus signal
is set to 1.

EngineError
Default signal: PFdoEngineError
Type: Digital output
This digital output is set to 1 when an Engine Error is encountered. This can have
various causes, but typically means that there is something wrong with the
configuration of the framework. See also the PFEngineError routine in
PFEngineError – Generates an engine error on page 50.
It is set to 0 again when the framework is restarted, and the Order Controller is
initialized.

Aborted
Default signal: PFdoAborted
Type: Digital output
This digital output is set to 1 when an abort has been granted.
It is set to 0 again when a new order is requested or when the ResetStatus signal
is set to 1.

ActiveOrder
Default signal: PFgoActiveOrder
Type: Group output

Continues on next page
36 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.2 Output signals
Continued

This group output is set to the numerical order code of the currently active order.

ActiveOrderIsService
Default signal: PFdoActiveOrderIsService
Type: Digital output
This digital output is set in combination with ActiveOrder. If set to 1, the active
order is a service order, if 0 a normal order (part).
If no order is active, this output is set to 0.

Application manual - Production Framework 37
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.2 Output signals

Continued

3.3.3 Example PLC interaction sequences

Example 1: Executing a part, simplified
1 The PLC has the intention to execute a part with order code 106.
2 The PLC waits until the Idle digital output signal is set to 1. This means that

it is OK for the PLC to issue an order.
3 The PLC sets the OrderCode input signal group to the binary representation

of 106, i.e. 1101010.
4 The PLC sets the RunPart digital input signal to 1.
5 The Idle signal is reset to 0. The digital status output signal Success is also

reset to 0.
6 The PLC can now reset the RunPart signal to 0.
7 The part (and any pre/post execution events) is executed.
8 When the execution is completed, the Idle signal is once again set to 1. The

Success signal is also set to 1.
9 The PLC can now issue next order (3.)

Example 2: Executing a part, detailed
1 The PLC has the intention to execute a part with order code 106.
2 The PLC waits until the Idle digital output signal is set to 1. This means that

it is OK for the PLC to issue an order.
3 The PLC sets the OrderCode input signal group to the binary representation

of 106, i.e. 1101010.
4 The PLC sets the RunPart digital input signal to 1.
5 The Idle signal is reset to 0. The status output signals Success, Invalid, Error,

Aborted, Refused (digital) and RefusedReson (group) are also reset to 0.
6 The ActiveOrder output signal group is set to 106. The ActiveOrderIsService

is kept at 0, since this is not a service order.
7 The PLC can now reset the RunPart signal to 0.
8 Pre-execution events are executed.
9 The Executing digital output signal is set to 1.
10 The part is executed.
11 The Executing signal is reset to 0.
12 Post-execution events are executed.
13 The ActiveOrder and ActinveOrderIsService signals are reset to their initial

values (0).
14 When the execution is completed, the Idle signal is once again set to 1. The

Success signal is also set to 1.
15 The PLC can now issue next order (3.)

Continues on next page
38 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.3 Example PLC interaction sequences

More
It is near impossible to to have a complete reference of all possible interaction
scenarios. Therefore, it is recommended for new users of the framework to carefully
read the signal descriptions above, and then install a simple virtual system with
Production Framework. Manual interaction – the user pretending to be a PLC -
using virtual signals in the I/O view in RobotStudio can then be performed for
effective learning.

Application manual - Production Framework 39
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.3.3 Example PLC interaction sequences

Continued

3.4 Default Logger

Short description
The default Logger component writes logs to files. It has support for filtering the
different log levels available, and can rotate between several files to avoid filling
up storage space.

Configuration
The default Logger can be configured to log or discard log entries from each log
level. This is done through a set of global Boolean variables:

• pflogErrOn

• pflogWarnOn

• pflogInfoOn

• pflogDebugOn

• pflogProgressOn

All log levels are disabled by default, and will be disabled again after moving the
program pointer to main.
They can be enabled/disabled at any time. One way is to enable them before calling
PFEngine:

MODULE MainModule

PROC main()

pflogErrOn := TRUE;

pflogProgressOn := TRUE;

PFEngine;

ENDPROC

ENDMODULE

An alternative way of setting these variables is to use the UserInitEngine callback
routine described in Running custom code when PFEngine is called on page 77.

Log files
The logs are outputted to files under HOME:/PFLogs/.
Each task has its own log files, and the Logger automatically rotates between two
files for each task to limit storage usage. When 10.000 lines have been appended
to one file, the other one is emptied and reused.
The files are named PF_LOG_{taskname}_{filenumber}.txt, e.g. for T_ROB1,
the first log is named PF_LOG_T_ROB1_1.txt.
See the default Progress Tracer in Default Progress Tracer on page 42 for an
example how a log might look like.

Continues on next page
40 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

3 Default components
3.4 Default Logger

Recommendations
To reducewear on the writable storagemedia, keeping logs disabled in a production
system is good practice. However, if constant logging is required, only log what is
necessary. Especially the default Progress Tracer has quite verbose logging, which
could be disabled by filtering the progress log level.
To enable the logging persistently, consider using the UserInitEngine callback
routine described in Running custom code when PFEngine is called on page 77.

Application manual - Production Framework 41
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.4 Default Logger

Continued

3.5 Default Progress Tracer

Short description
The default Progress Tracer component simply logs all Progress Reports using
the Logger component on the progress log level.

Log format
Using the default Logger component, this is a few typical lines from a default
Progress Tracer log:

[PROG] 2018-03-08_15:13:55 2: PR PFBase >>> Entering state:
EXEC <<< -s1- EXEC

[PROG] 2018-03-08_15:13:55 9: PR PFBase >>> Validating the
order before executing <<< -s1- 1 -s2- FALSE

[PROG] 2018-03-08_15:13:55 10: PR PFBase >>> Executing order
<<< -s1- 1 -s2- FALSE -s3- p1

Looking at the first log entry, the first field is the log level, in this case [PROG] for
progress. This is followed by a date and timestamp. These fields are added by the
default Logger component.
The default Progress Tracer adds a number for the corresponding
PFProgressReportType, a ":" character, a PR tag followed by the source
component, in this case PFBase (the base framework) and a separator for
readability, >>>.
Then follows the default text message provided in the progress report, ended by
another separator, <<<.
If the report contains variable information, this will be printed out at the end of the
log entry. For a full list of predefined Progress Reports and their variable
information, see the PFProgressReportType datatype in PFProgressReportType
– Identifier for progress reports on page 68.

42 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

3 Default components
3.5 Default Progress Tracer

4 Reference: Base framework RAPID instructions
4.1 PFAbortCycle – Aborts the current cycle

Usage
Calling the PFAbortCycle procedure will cause any ongoing and queued orders
to be aborted.

Basic examples
The following example illustrates the instruction PFAbortCycle:

Example 1
PROC myOrderProc

IF someCondition THEN

PFAbortCycle;

ENDIF

! Run the order as planned.

! This will not be executed if aborted.

ENDPROC

Arguments

[\allTasks]

Data type: switch
An abort will automatically be requested on all tasks managed by the framework.
Other tasks will be aborted from the TRAP execution level, which means that they
will be aborted as soon as possible. See Program execution on page 43.

Program execution
If the framework is not currently running an order, or any associated
pre/post-execution events, PFAbortCycle will have no effect.
If PFAbortCycle is called from normal execution level, the cycle will be aborted
immediately. This means that in that case there is no need to put a RETURN
statement after the call to PFAbortCycle since the program pointer will be moved
to framework control.
If PFAbortCycle is called from any other execution level, such as a TRAP, the
cycle will be aborted as soon as possible, which generally is as soon as the user
code returns the program pointer to framework control. User code can check at
any timewhether the cycle has been aborted by using the instruction PFIsAborted.
The reason here for not aborting immediately is to allow for a more controlled
behavior since a TRAP can happen at any time.

Syntax
PFAbortCycle ';'

Application manual - Production Framework 43
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.1 PFAbortCycle – Aborts the current cycle

4.2 PFClearQueue – Clears the order queue

Usage
Calling the PFClearQueue procedure will clear the order queue from any previously
enqueued orders, both part and service. Orders that have been started are not
affected.

Basic examples
The following example illustrates the instruction PFClearQueue:

Example 1
TRAP TrClear

PFClearQueue;

ENDTRAP

Arguments
None

Syntax
PFClearQueue ';'

Related information
For information on enqueuing orders, see PFPlaceOrder – Places an order on
page 58.

44 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.2 PFClearQueue – Clears the order queue

4.3 PFCurrentOrder – Retrieves information about the current order

Usage
Calling the PFCurrentOrder function will retrieve information about the order
currently being processed by the production loop. Optionally, it will also retrieve
information about queued orders.

Basic examples
The following example illustrates the instruction PFCurrentOrder:

Example 1
VAR bool processing;

VAR string orderCode;

VAR bool service;

processing := PFCurrentOrder(orderCode, service);

IF processing THEN

! Current order code in "orderCode".

! The order is a service if "service" is TRUE

ELSE

! No order is being processed.

ENDIF

Return value
Data type: bool
TRUE if an order is currently being processed, FALSE if not.

Arguments

orderCode

Data type: string
Variable or persistent to store the order code of the current order.

service

Data type: bool
Variable or persistent to store TRUE if the current order is a service order, FALSE
if not.

[\queuedOrderCode]

Data type: string
Variable or persistent to store the queued non-service order code.

[\queuedServiceOrderCode]

Data type: string
Variable or persistent to store the queued service order code.

Continues on next page
Application manual - Production Framework 45
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.3 PFCurrentOrder – Retrieves information about the current order

Syntax
PFCurrentOrder '('

[orderCode ':='] <variable or persistent (INOUT) of string>
','

[service ':='] <variable or persistent (INOUT) of bool> ','

['\' queuedOrderCode ':=' <variable or persistent (INOUT) of
string> ',']

['\' queuedServiceOrderCode ':=' <variable or persistent (INOUT)
of string> ','] ')'

46 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.3 PFCurrentOrder – Retrieves information about the current order
Continued

4.4 PFCurrentState – Retrieves information about the current production loop state

Usage
Calling the PFCurrentState function will retrieve the current production loop
state.

Basic examples
The following examples illustrate the instruction PFCurrentState:

Example 1
VAR PFBaseState currentState;

currentState := PFCurrentState();

Example 2
IF PFCurrentState() = PF_STATE_IDLE THEN

! Currently in the idle state

ENDIF

Return value
Data type: PFBaseState
The current production loop state.

Arguments
None

Syntax
PFCurrentState '()'

Related information
For information about the possible production loop states, see the reference for
the PFBaseState data type in PFBaseState – Production loop state on page 63.

Application manual - Production Framework 47
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.4 PFCurrentState – Retrieves information about the current production loop state

4.5 PFEngine – Starts the production loop

Usage
Calling the PFEngine procedure will start the production loop engine. This is
typically done from themain routine of a task that should bemanaged by Production
Framework.

Basic examples
The following example illustrates the instruction PFEngine:

Example 1
PROC main

PFEngine;

ENDPROC

Arguments
None

Program execution
The program pointer will never return from this routine until the production loop is
exited – by user request or because of an engine error, see Error handling on
page 48.
See PFExitEngine in PFExitEngine – Exits the production loop on page 53 for
information on how to request an engine exit.
The engine only runs and manages the task it was started in. It can be started on
any number of tasks. Each task has its own production loop and set of states.
Unless synchronized using the task synchronization functionality provided by the
framework or by basic Multitasking / MultiMove functionality, the managed tasks
are acting completely independent from each other.

Limitations
• This routine is designed to be called from normal execution level. It should

never be called from a TRAP or a system event routine.
• PFEngine is not reentrant. It should never be called from a framework event

or from an order procedure.

Error handling
The following recoverable error(s) can be generated. The error(s) can be handled
in an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

An engine error was raised within the framework. See the routine
PFEngineErrorCode inPFEngineErrorCode – Retrieves the last
generated engine error code on page 52.

PF_ENGINE_ERROR

The RobotWare option for Production Framework is not installed.
This is required. See installation instructions in Prerequisites on
page 21.

PF_NO_RW_OPT_ERROR

Continues on next page
48 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.5 PFEngine – Starts the production loop

Syntax
PFEngine ';'

Application manual - Production Framework 49
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.5 PFEngine – Starts the production loop

Continued

4.6 PFEngineError – Generates an engine error

Usage
Calling the PFEngineError procedure will generate an engine error, which will
cause the framework to take proper actions and then exit the production loop.
An engine error indicates that there is an internal error in a framework component,
or that there is a framework configuration error in the system. PFEngineError
should not be used for runtime errors or process errors. This means that
PFEngineError should normally be called from custom components only.
An engine error should ideally never appear during production, but rather during
programming and integration of the system. If used for errors that can occur during
production, its usage should be restricted to irrecoverable errors.

Basic examples
The following example illustrates the instruction PFEngineError:

Example 1
IF someCondition THEN

PFEngineError \exitNow, MY_ERR_CODE, "Something bad happened!";

ENDIF

Arguments

[\exitNow]

Data type: switch
The execution will be stopped as soon as possible. The program pointer will be
moved from the calling code to base framework control before exiting. This means
that no statements in the calling code after this call will be executed.
If PFEngineError is called from an execution level other than normal, this
argument will be ignored.

errorCode

Data type: num
A unique numeric error code that identifies this error. The following intervals should
be used:

IntervalDescription

10000-19999Reserved by the base framework

20000-29999Order Controller (OrderController) component

30000-39999Order Library (OrdersDef) component

40000-49999Event Library (EventsDef) component

50000-59999Progress Tracer (Progress) component

60000-69999Logger (Logger) component

For other sources, any numbers other than the ones above can be used.

msg

Data type: string
Continues on next page
50 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.6 PFEngineError – Generates an engine error

A message which will be logged in addition to the error code.

Program execution
Unless the exitNow argument is used, production loop execution will stop at some
time in the future, normally when the base framework gains control over the program
pointer.

Syntax
PFEngineError

['\' exitNow ',']

[errorCode ':='] < expression (IN) of num > ','

[msg ':='] < expression (IN) of string > ';'

Related information
For information about pre-defined engine errors, seeEngine error codes on page74.

Application manual - Production Framework 51
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.6 PFEngineError – Generates an engine error

Continued

4.7 PFEngineErrorCode – Retrieves the last generated engine error code

Usage
The PFEngineErrorCode function is used to retrieve the code of the last generated
engine error.
PFEngineErrorCode is typically called from the ERROR handler in the routine
where PFEngine has raised the PF_ENGINE_ERROR RAPID error, to find out what
kind of engine error occurred.

Basic examples
The following examples illustrate the instruction PFEngineErrorCode:

Example 1
PROC main

PFEngine;

ERROR

IF ERRNO = PF_ENGINE_ERROR THEN

IF PFEngineErrorCode() = PF_ERR_EXEC_ORDER THEN

! Could not execute order

TRYNEXT;

ENDIF

ENDIF

ENDPROC

Return value
Data type: num
The code of the last engine error. Value 0 if no engine error has occurred yet.

Arguments
None

Syntax
PFEngineErrorCode '(' ')'

Related information
For information about pre-defined engine errors, seeEngine error codes on page74.

52 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.7 PFEngineErrorCode – Retrieves the last generated engine error code

4.8 PFExitEngine – Exits the production loop

Usage
Calling the PFExitEnginewill exit the production loop started with the PFEngine
procedure, and will eventually cause the program pointer to return from PFEngine.

Basic examples
The following example illustrates the instruction PFExitEngine:

Example 1
IF someCondition THEN

PFExitEngine \now;

ENDIF

Arguments

[\now]

Data type: switch
The execution will be stopped as soon as possible. The program pointer will be
moved from the calling code to base framework control before exiting. This means
that no statements in the calling code after this call will be executed.
If PFExitEngine is called from an execution level other than normal, this argument
will be ignored.

[\allTasks]

Data type: switch
PFEngine will automatically be exited on all tasks managed by the framework.
PFEngine in other tasks will have the exit requested from the TRAP execution
level, which means that the exit will occur as soon as possible. See Program
execution on page 53.

Program execution
Unless the now argument is used, production loop execution will stop at some time
in the future, normally when the base framework gains control over the program
pointer.

Syntax
PFExitEngine

['\' now] ';'

Application manual - Production Framework 53
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.8 PFExitEngine – Exits the production loop

4.9 PFIsAborted – Checks whether the current order is aborted

Usage
The PFIsAborted function is used to check whether a cycle in the production
loop has been aborted (using PFAbortCycle) but still has not arrived at the idle
state.
This function is useful to detect from normal execution level that an abort has been
requested from a TRAP.

Basic examples
The following example illustrates the instruction PFIsAborted:

Example 1
IF PFIsAborted() THEN

! Move robot back to a safe position and/or

! other cleanup measures.

RETURN;

ENDIF

Return value
Data type: bool
TRUE if the cycle has been aborted. FALSE if not, or if the idle state has already
been reached.

Arguments
None

Syntax
PFIsAborted '()'

54 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.9 PFIsAborted – Checks whether the current order is aborted

4.10 PFLastOrderCompletion – Retrieves information about the latest order

Usage
The PFLastOrderCompletion function is used to check the completion status
of the last order that was placed.
PFLastOrderCompletion can be called at any time, including after moving the
program pointer to main. A typical scenario for using this function is to decide
whether the program pointer was moved to main while the production loop was
executing an order.
Optionally, the order code and service status of the order can be retrieved as well.

Basic examples
The following examples illustrate the instruction PFLastOrderCompletion:

Example 1
PROC main

IF PFLastOrderCompletion() = PF_LC_STATE_PENDING THEN

! An order was being executed when

! the program pointer was moved to

! main.

ENDIF

PFEngine;

ENDPROC

Example 2
! PF_EV_IDLE_CYCLIC or PF_EV_IDLE event routine

PROC myIdleEv

IF PFLastOrderCompletion() = PF_LC_STATE_ABORTED THEN

! The last order was aborted.

ENDIF

ENDPROC

Return value
Data type: PFOrderCompletionState
The completion state of the last order placed.

Arguments

[\orderCode]

Data type: string
Variable or persistent to store the order code of the last order placed.

[\service]

Data type: bool
Variable or persistent to store TRUE if the last order placed was a service order,
FALSE if
not.

Continues on next page
Application manual - Production Framework 55
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.10 PFLastOrderCompletion – Retrieves information about the latest order

Syntax
PFLastOrderCompletion '('

['\' orderCode ':=' <variable or persistent (INOUT) of string>]

['\' service ':=' <variable or persistent (INOUT) of bool>] ')'

Related information
For information about the possible completion states, see the reference for the
PFOrderCompletionState data type in PFOrderCompletionState – Completion
state of last order placed on page 67.

56 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.10 PFLastOrderCompletion – Retrieves information about the latest order
Continued

4.11 PFLog – Logs a message

Usage
The PFLog procedure is used to send a custom entry to be logged by the Logger
component.

Basic examples
The following examples illustrate the instruction PFLog:

Example 1
IF someCondition THEN

PFLog PFL_LVL_WARN, ["There might be an issue!"];

ENDIF

Example 2
VAR string userInput;

userInput := GetUserInput();

PFLog PFL_LVL_INFO, ["User input was ", userInput];

Arguments

level

Data type: PFLogLevel
Log level to be used.

msg

Data type: string{*}
The message to be logged. The array format is used to allow for messages longer
than the 80 character limit of RAPID strings. The array elements will be concatenated
during logging.

NoNewLine

Data type: switch
If this argument is used, no new line character will be appended at the end of the
message.
This argument might be ignored depending on the Logger component.

Syntax
PFLog

[level ':='] <expression (IN) of PFLogLevel>] ','

[msg ':='] <array variable {*} or persistent (IN) of string>

['\' NoNewLine] ';'

Related information
For information about the available log levels, see the reference for the PFLogLevel
data type in PFLogLevel – Log level for filtering logs on page 66.

Application manual - Production Framework 57
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.11 PFLog – Logs a message

4.12 PFPlaceOrder – Places an order

Usage
The PFPlaceOrder function is used to place a new order for execution by the
production loop.
PFPlaceOrder should in most cases only be called by the Order Controller
component, unless a custom Order Controller implementation is installed that is
designed to allow other parts of the software to place orders.
If the default Order Controller is installed, PFPlaceOrder should not be used since
this can cause undefined behavior.

Basic examples
The following examples illustrate the instruction PFPlaceOrder:

Example 1
TRAP IncomingOrder

VAR PFResult result;

VAR string orderCode;

VAR string refusedReason;

orderCode := GetOrderCode();

result := PFPlaceOrder(

orderCode, FALSE, refusedReason);

TEST result

CASE PF_RESULT_OK:

! Order placed successfully

CASE PF_RESULT_UNDEFINED:

! No such order code

CASE PF_RESULT_REFUSED:

! Order code exists, but

! order was refused for a reason

! stored in the refusedReason variable

CASE PF_RESULT_BUSY:

! The production loop was busy processing

! another order and the allowQueue argument

! was not used

DEFAULT:

! Something went wrong. Check the log

ENDTEST

ENDTRAP

Return value
Data type: PFResult
The result of the attempt to place the order.

Continues on next page
58 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.12 PFPlaceOrder – Places an order

Arguments

[\searchOnly]

Data type: switch
Cannot be used together with \validateOnly or \allowQueue.
Only perform a search for the provided order without validating or executing it. If
the order number does not exist, PFPlaceOrder will return
PF_RESULT_UNDEFINED.

[\validateOnly]

Data type: switch
Cannot be used together with \searchOnly or \allowQueue.
Only perform a search and validation of the provided order without executing it. If
the order number does not exist, PFPlaceOrder will return
PF_RESULT_UNDEFINED. If the order number exists, but validation fails,
PF_RESULT_REFUSED will be returned, and refusedReason will be assigned the
reason for refusal.

[\allowQueue]

Data type: switch
Cannot be used together with \searchOnly or \validateOnly.
Allow the order to be enqueued if the production loop currently is busy.
The queue has room for one non-service order and one service order. If the slot
for the corresponding order type is already used, the old order will be discarded
and replaced by this order.
An enqueued service order will always be executed before any enqueued
non-service orders.

orderCode

Data type: string
The order code for the order that should be placed.

service

Data type: bool
TRUE if the placed order is a service order, FALSE otherwise. This argument is
necessary since order codes for non-service orders and service orders can overlap.

refusedReason

Data type: string
Variable or persistent to store the reason for refusal if the order was refused during
validation.

Syntax
PFPlaceOrder '('

['\' searchOnly] |

['\' validateOnly] |

['\' allowQueue]

[orderCode ':='] <expression (IN) of string ','

Continues on next page
Application manual - Production Framework 59
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.12 PFPlaceOrder – Places an order

Continued

[service ':='] <expression (IN) of bool ','

[refusedReason ':='] <variable or persistent (INOUT) of string>
]

')'

Limitations
To protect against race conditions, PFPlaceOrder disables the interrupt queue
while executing on normal execution level, and reenables it again when done. This
means that if the interrupt queue was disabled (using IDisable) when
PFPlaceOrder was called, it will still be enabled when PFPlaceOrder returns.

Related information
For information about the available result codes, see the reference for the PFResult
data type in PFResult – General response data type on page 73.
For information about order validation, see Component: Order Library on page15.

60 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.12 PFPlaceOrder – Places an order
Continued

4.13 PFProgressReport – Generates a Progress Tracer report

Usage
The PFProgressReport procedure is used to generate a Progress Report that
will be sent to the Progress Tracer component.
It is mainly provided for use within custom framework components, but could
technically be used from any user code.

Basic examples
The following example illustrates the instruction PFProgressReport:

Example 1
RunPhase1;

currentMode := ValToStr(OpMode());

PFProgressReport

PFP_SOURCE_CUSTOM, MY_CUSTOM_REPORT_1,

"About to enter phase 2. OP mode is " + currentMode,

\s1:=currentMode;

RunPhase2;

Arguments

source

Data type: PFProgressSource
The source component of the report. PFP_SOURCE_BASE is reserved for the base
framework. The other constants of type PFProgressSource can be used, but only
if they correspond to the actual component calling the PFProgressReport routine.

report

Data type: PFProgressReportType
The unique (for the provided source) identifier number that can be used by a custom
Progress Tracer component to programmatically identify this report.

defaultTxt

Data type: string
A default text (in any desired language) that can be used for describing this report.
All variable information in this string should also be provided separately in the s1-6
arguments below. This enables usage of the variable data within the Progress
Tracer without parsing it from the defaultTxt string.

[\s1]

Data type: string

[\s2]

Data type: string

Continues on next page
Application manual - Production Framework 61
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.13 PFProgressReport – Generates a Progress Tracer report

[\s3]

Data type: string

[\s4]

Data type: string

[\s5]

Data type: string

[\s6]

Data type: string

Syntax
PFProgressReport

[source ':='] <expression (IN) of PFProgressSource> ','

[report ':='] <expression (IN) of PFProgressReportType> ','

[defaultTxt ':='] <expression (IN) of string>

['\' s1 ':=' <expression (IN) of string >]

['\' s2 ':=' <expression (IN) of string >]

['\' s3 ':=' <expression (IN) of string >]

['\' s4 ':=' <expression (IN) of string >]

['\' s5 ':=' <expression (IN) of string >]

['\' s6 ':=' <expression (IN) of string >]

Related information
For information about the available report sources, see the reference for the
PFProgressSource data type in PFProgressSource – Source of progress reports
on page 72.
For information about the available report types, see the reference for the
PFProgressReportType data type in PFProgressReportType – Identifier for
progress reports on page 68.
For information about the Progress Tracer component, see Component: Progress
Tracer on page 19.

62 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

4 Reference: Base framework RAPID instructions
4.13 PFProgressReport – Generates a Progress Tracer report
Continued

5 Base framework RAPID data types and constants
5.1 PFBaseState – Production loop state

Usage
PFBaseState is a data type used to represent a state in the production loop.

Predefined data

DescriptionPredefined constantValue

Initial state after moving program pointer to main.PF_STATE_START0

The "Init 1" state.PF_STATE_INIT_11

The "Init 2" state.PF_STATE_INIT_22

The "Idle" state.PF_STATE_IDLE3

The "Pre-execution events" state.PF_STATE_PRE_EV4

The "Execution" state.PF_STATE_EXEC5

The "Post-execution events" state.PF_STATE_POST_EV6

The "Abort" state.PF_STATE_ABORT7

Used when the loop has exit, by user request or by engine
error.

PF_STATE_EXITED8

Characteristics
PFBaseState is an alias data type for num and consequently inherits its
characteristics.

Related information
For information about the topology of the production loop states, see The production
loop on page 11.

Application manual - Production Framework 63
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.1 PFBaseState – Production loop state

5.2 PFEventType – Event type for production loop / system events

Usage
PFEventType is a data type used to represent a type of event that can be triggered
by the production loop entering states. There are also system events that can
trigger asynchronously with the production loop. These are executed on the
LEVEL_SERVICE execution level.
Note that the use of the word "service" in the context of execution levels is unrelated
to the service status of framework orders.

Predefined data

Execution levelTrigger conditionPredefined constantValue

LEVEL_NORMALEntering the "Init 1" state.PF_EV_INIT11

LEVEL_NORMALEntering the "Init 2" state.PF_EV_INIT22

LEVEL_NORMALEntering the "Idle" state.PF_EV_IDLE3

LEVEL_NORMALIf configured, every n:th second while in
"Idle state".

PF_EV_IDLE_CYCLIC4

LEVEL_NORMALEntering the "Pre-execution events" state
and order is non-service.

PF_EV_PREPART5

LEVEL_NORMALEntering the "Pre-execution events" state
and order is service.

PF_EV_PRESERVICE6

LEVEL_NORMALEntering the "Post-execution events" state
and order is non-service.

PF_EV_POSTPART7

LEVEL_NORMALEntering the "Post-execution events" state
and order is service.

PF_EV_POSTSERVICE8

LEVEL_NORMALEntering the "Abort" state.PF_EV_ABORT9

LEVEL_NORMALEntering the "Exit" state.PF_EV_EXIT10

LEVEL_SERVICERAPID system event routine POWER_ONPF_EV_SYS_POWERON11

LEVEL_SERVICERAPID system event routine QSTOPPF_EV_SYS_QSTOP12

LEVEL_SERVICERAPID system event routine RESTARTPF_EV_SYS_RESTART13

LEVEL_SERVICERAPID system event routine STARTPF_EV_SYS_START14

LEVEL_SERVICERAPID system event routine STOPPF_EV_SYS_STOP15

LEVEL_SERVICERAPID system event routine START and
RESTART, if the controller operating
mode has changed during the stop, or if
the system has been rebooted using
"Reset RAPID" or "Reset system".

PF_EV_SYS_OPMODE16

LEVEL_SERVICERAPID system event routine START and
RESTART, if the controller language set-
ting has changed during the stop, or if the
system has been rebooted using "Reset
RAPID" or "Reset system".

PF_EV_SYS_LANG17

Characteristics
PFEventType is an alias data type for num and consequently inherits its
characteristics.

Continues on next page
64 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.2 PFEventType – Event type for production loop / system events

Related information
For information about the topology of the production loop states, see The production
loop on page 11.
For information about execution level, see Technical reference manual - RAPID
Instructions, Functions and Data types.
For information about using and configuring the event PF_EV_IDLE_CYCLIC, see
Setting Idle state cyclic event interval on page 79.

Application manual - Production Framework 65
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.2 PFEventType – Event type for production loop / system events

Continued

5.3 PFLogLevel – Log level for filtering logs

Usage
PFLogLevel is a data type used to represent a type of log level. The Logger
component uses log levels to signify importance and/or type of log.

Predefined data

DescriptionPredefined constantValue

ErrorPFL_LVL_ERR1

WarningPFL_LVL_WARN2

InformationPFL_LVL_INFO3

DebugPFL_LVL_DEBUG4

Progress TracerPFL_LVL_PROGRESS5

Characteristics
PFLogLevel is an alias data type for num and consequently inherits its
characteristics.

Related information
For information about using the log levels, see the PFLog instruction in PFLog –
Logs a message on page 57.

66 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.3 PFLogLevel – Log level for filtering logs

5.4 PFOrderCompletionState – Completion state of last order placed

Usage
PFOrderCompletionState is a data type used to represent a state of the last
order placed.

Predefined data

Last order, descriptionPredefined constantValue

Unknown. Used after RAPID/system reset.PF_LC_STATE_UNKNOWN0

Last known state was that the order was executing or
about to start executing.

PF_LC_STATE_PENDING1

The order was finished normally.PF_LC_STATE_FINISHED2

The order was aborted.PF_LC_STATE_ABORTED3

An error occurred during placing the order, or during the
execution.

PF_LC_STATE_ERROR4

Characteristics
PFOrderCompletionState is an alias data type for num and consequently inherits
its characteristics.

Related information
For information about using the order completion states, see the
PFLastOrderCompletion instruction in PFLastOrderCompletion – Retrieves
information about the latest order on page 55.

Application manual - Production Framework 67
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.4 PFOrderCompletionState – Completion state of last order placed

5.5 PFProgressReportType – Identifier for progress reports

Usage
PFProgressReportType is a data type used to represent a specific Progress
Tracer report type.
This data type is typically used when implementing a custom Progress Tracer or
when setting up custom Progress Tracer report points.
A custom Progress Tracer component can be implemented to add behavior at
certain points during framework execution.
If custom progress report types are created, make sure to avoid overlap with the
predefined constants below. Using values above 10000 is a good guideline. Also
keep in mind that if custom components from different authors are installed, make
sure that their values are not overlapping. Failing to do this can cause undesired
behavior if a custom Progress Tracer is also used.
Each custom component should have any custom report types well documented.

Predefined data
The following report types are predefined by the base framework. The optional
report data arguments S1-S6 (see related information) are described if present.

Report occurs whenPredefined constantValue

PFEngine is called.PFPR_BASE_ENGINE_START1

A new production loop state is entered. S1: The
name of the state ("INIT1", "INIT2", "IDLE", "PREEV",
"EXEC", "POSTEV", "ABORT", "EXITED").

PFPR_BASE_ENTER_STATE2

Base framework is about to initialize a component.
S1: Name of the component ("PFLogger", "PFPro-
gress", "PFOrdersDef", "PFEventsDef", "PFOrder-
Controller")

PFPR_BASE_INIT_MODULE3

Invoking the CallbackIdle routine on the Order Con-
troller. The isIdle argument is TRUE. Also see PF-
PR_BASE_PLORD_CB_ST.

PFPR_BASE_CB_IDLE4

Waiting for order in the "Idle" state.PFPR_BASE_WAIT_ORDER5

Coordinating tasks before executing order.PFPR_BASE_SYNC_EXEC16
S1: Current order code.
S2: Current order is service ("TRUE","FALSE").
S3: Current order sync tag.

Coordinating tasks after executing order.PFPR_BASE_SYNC_EXEC27
S1: Current order code.
S2: Current order is service ("TRUE","FALSE").
S3: Current order sync tag.

Not used. See PFPR_BASE_PLORD_CHK, used when
validating an order when the order is placed.

PFPR_BASE_VALIDATE18

Continues on next page
68 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.5 PFProgressReportType – Identifier for progress reports

Report occurs whenPredefined constantValue

Validating order before executing order, after any
Preexecution events have been fired. Invoking the
ValidateOrder instruction on the Order Library
component.

PFPR_BASE_VALIDATE29

S1: Current order code.
S2: Current order is service ("TRUE","FALSE").

Executing order.PFPR_BASE_EXEC10
S1: Current order code.
S2: Current order is service ("TRUE","FALSE").
S3: Current order procedure name.

Order was refused before executing it.PFPR_BASE_REFUSED11
S1: Current order code.
S2: Current order is service ("TRUE","FALSE").
S3: Reason for refusal.

Invoking the CallbackRefused routine on the Or-
der Controller component.

PFPR_BASE_CB_REFUSED12

S1: Current order code.
S2: Current order is service ("TRUE","FALSE").
S3: Reason for refusal.

Invoking the CallbackSuccess routine on the Or-
der Controller component.

PFPR_BASE_CB_SUCCESS13

S1: Current order code.
S2: Current order is service ("TRUE","FALSE").
S3: Numeric, cycle time for complete cycle including
events.
S4: Numeric, cycle time for executing the order, ex-
cluding events but including task synchronization
time.
S5: Numeric, cycle time for executing the order, ex-
cluding events and task synchronization time.

Invoking the RewindSequences routine on the
Event Library component.

PFPR_BASE_REWIND_EV14

Invoking the RewindSysSequences routine on the
Event Library component.

PFPR_BASE_REWIND_EV_S15

Invoking the GetNextEvent routine on the Event
Library component.

PFPR_BASE_NEXT_EV16

S1: Numeric value of event type (see PFEventType
– Event type for production loop / system events on
page 64)

Invoking the GetNextSysEvent routine on the
Event Library component.

PFPR_BASE_NEXT_EV_S17

S1: Numeric value of event type (see PFEventType
– Event type for production loop / system events on
page 64)

Result from Event Library routine GetNextEvent
was not PF_RESULT_OK.

PFPR_BASE_N_EV_ERR18

S1: Numeric value of the returned result.

Result from Event Library routine
GetNextSysEvent was not PF_RESULT_OK.

PFPR_BASE_N_EV_ERR_S19

S1: Numeric value of the returned result.

Continues on next page
Application manual - Production Framework 69
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.5 PFProgressReportType – Identifier for progress reports

Continued

Report occurs whenPredefined constantValue

Coordinating tasks before executing synchronized
event.

PFPR_BASE_SYNC_EV120

S1: Event procedure name.
S2: Event sync tag

Coordinating tasks after executing synchronized
event.

PFPR_BASE_SYNC_EV221

S1: Event procedure name.
S2: Event sync tag

Executing event.PFPR_BASE_EXEC_EV22
S1: Event procedure name.

Executing system event.PFPR_BASE_EXEC_EV_S23
S1: Event procedure name.

PFPlaceOrder was called.PFPR_BASE_PLORD24
S1: Order code.
S2: Order is service ("TRUE","FALSE").
S3: Function ("FIND","VALIDATE","EN-
QUEUE","PLACE")

PFPlaceOrder was called, the production loop was
busy.

PFPR_BASE_PLORD_BSY25

S1: Order code.
S2: Order is service ("TRUE","FALSE").

PFPlaceOrder was called, invoking Order Library
routine GetOrderInfo.

PFPR_BASE_PLORD_ORDINF26

S1: Order code.
S2: Order is service ("TRUE","FALSE").

PFPlaceOrder was called, invoked Order Library
routine GetOrderInfo or ValidateOrder, order
code was unknown.

PFPR_BASE_PLORD_UNDEF27

S1: Order code.
S2: Order is service ("TRUE","FALSE").

PFPlaceOrder was called, invoked Order Library
routine GetOrderInfo or ValidateOrder, did not get
a valid return code.

PFPR_BASE_PLORD_NOTOK28

S1: Order code.
S2: Order is service ("TRUE","FALSE").

PFPlaceOrder was called, invoking the
ValidateOrder instruction on the Order Library
component.

PFPR_BASE_PLORD_CHK29

S1: Current order code.
S2: Current order is service ("TRUE","FALSE").

PFPlaceOrder was called, invoked Order Library
routine ValidateOrder, order was refused.

PFPR_BASE_PLORD_REFUSE30

S1: Order code.
S2: Order is service ("TRUE","FALSE").
S3: Reason for refusal.

PFPlaceOrder was called, order was OK, but the
order was placed using one of the \searchOnly or
\validateOnly optional arguments.

PFPR_BASE_PLORD_DRYOK31

Continues on next page
70 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.5 PFProgressReportType – Identifier for progress reports
Continued

Report occurs whenPredefined constantValue

Invoking the CallbackIdle routine on the Order
Controller. The isIdle argument is FALSE. Also
see PFPR_BASE_CB_IDLE.

PFPR_BASE_PLORD_CB_ST32

Abort was requested.PFPR_BASE_DO_ABORT_REQ33

Abort was granted. Using immediate abort. The abort
was requested from normal execution level.

PFPR_BASE_DO_ABORT_GRA134

Abort was granted. Aborting when possible. The
abort was requested from an execution level other
than normal.

PFPR_BASE_DO_ABORT_GRA235

Abort denied. The production loop was not busy.PFPR_BASE_DO_ABORT_DEN36

Cyclic interval timed out. Firing cyclic idle events.PFPR_BASE_IDLE_CYCLIC37
S1: Numeric, current idle cyclic interval.

Invoking function package application hook (see
Running custom code before/after any event type
on page 78).

PFPR_BASE_APP_EV_HOOK38

S1: Hook before or after event type ("PRE","POST").
S2: Numeric value of event type (see PFEventType
– Event type for production loop / system events on
page 64)

Engine exit was ordered. Exiting production loop
when possible.

PFPR_BASE_EXIT_139

Engine exit was ordered. Exiting production loop
immediately.

PFPR_BASE_EXIT_240

Engine exit is imminent.PFPR_BASE_EXIT_341

Invoking user engine init hook, PFInitEngineHook.PFPR_BASE_INIT_HOOK_142

User init hook has been invoked successfully.PFPR_BASE_INIT_HOOK_243

User init hook could not be found.PFPR_BASE_INIT_HOOK_344

Raising RAPID error PF_ENGINE_ERROR from
PFEngine.

PFPR_BASE_ENGINE_ERR45

Order queue cleared.PFPR_BASE_CLEAR_Q46

Characteristics
PFProgressReportType is an alias data type for num and consequently inherits
its characteristics.

Related information
For information about Progress Tracer reports, see the PFProgressReport
instruction in PFProgressReport – Generates a Progress Tracer report on page61
and the overview of the Progress Tracer component in Component: Progress
Tracer on page 19.

Application manual - Production Framework 71
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.5 PFProgressReportType – Identifier for progress reports

Continued

5.6 PFProgressSource – Source of progress reports

Usage
PFProgressSource is a data type used to represent a source of a Progress Tracer
report. All predefined reports are from the source PFP_SOURCE_BASE. However,
custom implementations of components or other user code can use the existing
source types.

Predefined data

DescriptionPredefined constantValue

Framework basePFP_SOURCE_BASE1

Order Library componentPFP_SOURCE_ORDERSDEF2

Event Library componentPFP_SOURCE_EVENTSDEF3

Order Controller componentPFP_SOURCE_ORDERCTRL4

Anything elsePFP_SOURCE_CUSTOM5

Characteristics
PFProgressSource is an alias data type for num and consequently inherits its
characteristics.

Related information
For information about Progress Tracer reports, see the PFProgressReport
instruction in PFProgressReport – Generates a Progress Tracer report on page61
and the overview of the Progress Tracer component in Component: Progress
Tracer on page 19.

72 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.6 PFProgressSource – Source of progress reports

5.7 PFResult – General response data type

Usage
PFResult is a general data type for returning results from framework component
API calls.

Predefined data

Predefined constantValue

PF_RESULT_UNSET-1

PF_RESULT_OK0

PF_RESULT_UNDEFINED1

PF_RESULT_REFUSED2

PF_RESULT_BUSY3

PF_RESULT_ERROR4

Characteristics
PFResult is an alias data type for num and consequently inherits its characteristics.

Application manual - Production Framework 73
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.7 PFResult – General response data type

5.8 Engine error codes

Overview
Engine error codes are values of the datatype num.
In some cases, e.g. when implementing custom components, it might be useful to
define custom engine errors. For information regarding declaration and usage of
custom engine errors, see the PFEngineError routine in PFEngineError –
Generates an engine error on page 50.
Most of the base framework error codes are caused by a failure when the framework
tries to call a component using late binding. This will typically happen when the
component is missing or replaced by a custom implementation that does not adhere
to the API specification.

Predefined error codes, base framework

DescriptionPredefined constantValue

Failure when trying to call the Init routine on
a component.

PF_ERR_INIT_COMPONENT10001

There was an unhandled RAPID error raised
within PFEngine. Check the log for more in-
formation.

PF_ERR_UNH_RAISED_ERROR10002

Failure when trying to call the CallbackIdle
routine on the Order Controller component.

PF_ERR_CALLBACK_IDLE10003

Internal error. The internal pool of sync num-
bers for task synchronization is empty.

PF_ERR_GETSYNCNUM10004

The ValidateOrder routine on the Order
Library component returned an unexpected
value.

PF_ERR_UNEXPECTED_VALID_RET10005

Failure when trying to call the ValidateOrder
routine on the Order Library component.

PF_ERR_CALL_VALIDATE_ORDER10006

Failure when trying to call the corresponding
procedure for a given order.

PF_ERR_EXEC_ORDER10007

Failure when trying to call the
CallbackRefused routine on the Order Con-
troller component.

PF_ERR_CALLBACK_REFUSED10008

Failure when trying to call the
CallbackSuccess routine on the Order Con-
troller component.

PF_ERR_CALLBACK_SUCCESS10009

Failure when trying to call the
CallbackAborted routine on the Order Con-
troller component.

PF_ERR_CALLBACK_ABORTED10010

Failure when trying to call the
RewindSequences routine on the Event Lib-
rary component.

PF_ERR_CALL_REWIND10011

Failure when trying to call the GetNextEvent
routine on the Event Library component.

PF_ERR_CALL_NEXT_EV10012

Failure when trying to call the corresponding
procedure for a given event.

PF_ERR_FIRE_EV10013

Continues on next page
74 Application manual - Production Framework

3HAC085600-001 Revision: A
© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.8 Engine error codes

DescriptionPredefined constantValue

Failure when trying to call the
RewindSysSequences routine on the Event
Library component.

PF_ERR_CALL_REWIND_SYS10014

Failure when trying to call the
GetNextSysEvent routine on the Event Lib-
rary component.

PF_ERR_CALL_NEXT_EV_SYS10015

Failure when trying to call the corresponding
procedure for a given sys-event.

PF_ERR_FIRE_EV_SYS10016

Failure when trying to call the GetOrderInfo
routine on the Order Library component.

PF_ERR_CALL_GET_ORD_INFO10017

Failure when trying to call the Log routine on
the Logger component.

PF_ERR_CALL_LOG10018

Failure when trying to call the
ProgressReport routine on the Progress
Tracer component.

PF_ERR_CALL_PROGRESSREPORT10019

Internal error. Unknown state transition. Check
the log for more information.

PF_ERR_UNKNOWN_STATE_TRANS10020

Internal error. Unknown state. Check the log
for more information.

PF_ERR_NONEXECUTABLE_STATE10021

Predefined error codes, default Order Library

DescriptionPredefined constantValue

Order code / plcCode is not unique among
declared partdata or servicedata.

PF_ERR_DUPLICATE_ORDER_NUM30001

Application manual - Production Framework 75
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

5 Base framework RAPID data types and constants
5.8 Engine error codes

Continued

This page is intentionally left blank

6 Miscellaneous
6.1 Running custom code when PFEngine is called

PFInitEngineHook
When PFEngine is called, the framework will try to call a procedure named
PFInitEngineHook. This procedure can be declared by the user or function
package developer anywhere in global scope.
This can typically be used to set global configuration variables, such as enabling
log levels in the default Logger component, or the settings described in this section.
Note that – as with any RAPID routine - only one PFInitEngineHook can be
declared in global scope in each task.
An example, where the error log level is set to enabled from a module other than
the main module.

MODULE SomeModule

PROC PFInitEngineHook()

pflogErrOn := TRUE;

ENDPROC

ENDMODULE

MODULE MainModule

PFEngine; ! Error logging will be enabled

ENDMODULE

Application manual - Production Framework 77
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

6 Miscellaneous
6.1 Running custom code when PFEngine is called

6.2 Running custom code before/after any event type

PFApplictionPreEventHook and PFApplicationPostEventHook
In some situations, it is desirable to run code prior to or after events of a certain
type are fired. This is typically needed by function package developers who can’t
control the user’s choice of event sequencing, but still need to run code first or
last.
Before and after running events of any type, the framework will try to call procedures
named PFApplicationPreEventHook and PFApplicationPostEventHook
respectively.
The use of the words "Pre" and "Post" in this case should not be confused with
the pre-execution and post-execution event type.
The procedures must have an argument of the type PFEventType, which will
contain the corresponding event type.
Example:

PROC PFApplicationPreEventHook(PFEventType evType)

TEST evType

CASE PF_EV_ABORT:

! Do something before any

! ABORT events are fired

CASE PF_EV_INIT1:

! Do something before any

! INIT1 events are fired

ENDTEST

ENDPROC

78 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

6 Miscellaneous
6.2 Running custom code before/after any event type

6.3 Setting Idle state cyclic event interval

pfIdleCyclicEvInterval
By default, the event type PF_EV_IDLE_CYCLIC is disabled. If configured, the
event type will be fired recurrently at a defined frequency while the production loop
is in the idle state.
The configuration is done by setting the global num variable
pfIdleCyclicEvInterval to a positive number, representing the time in seconds
for which the framework should wait between each trigger.
The pfIdleCyclicEvInterval variable will be reset to 0 (disabled) after moving
the program pointer to main. It should preferably be initialized using the method
described in Running custom code when PFEngine is called on page 77.

Application manual - Production Framework 79
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

6 Miscellaneous
6.3 Setting Idle state cyclic event interval

6.4 Disabling the Progress Tracer component

pfBaseProgressEnabled
For some rare cases, it is possible to speed up the framework execution overhead
by disabling the use of the Progress Tracer component.
This is done by setting the global bool variable pfBaseProgressEnabled to FALSE.
The pfBaseProgressEnabled variable will be reset to TRUE (enabled) after
moving the program pointer to main. It should preferably be initialized using the
method described in Running custom code when PFEngine is called on page 77.

80 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

6 Miscellaneous
6.4 Disabling the Progress Tracer component

7 PFView - FlexPendant interface
Overview and prerequisites

PFView is a simple information interface for the FlexPendant. It executes within
Production Screen, and therefore requires the Production Screen RobotWare
option.
PFView is not strictly necessary for a Production Framework based system to
function, but can rather be seen as a tool of convenience for the integrator and/or
operator to get a quick overview of the current state of the base framework.
Since the default components are designed to be replaceable by function package
developers, only information from the base framework is displayed. For the same
reason, interaction with the framework through PFView is limited to avoid conflicts
with a custom Order Controller component.
If more information and/or user interaction is required, a custom FlexPendant
application more tightly coupled to the non-base components could be developed
using any of the options available for creating FlexPendant applications.

Available information in PFView
PFView is started from the main window in Production Screen.

xx2200001372

The following information is available in PFView:

Description

Selection of the RAPID task to display information from.Task

A graphical view of the production loop with the current
state highlighted with color.

State

The current production loop state.Current Order – State

The description of the current order.Current Order – Order

The type of the current order, Normal for non-service orders
and Service for service orders.

Current Order – Type

The description of the current event being executed.Current Order – Event

Although not strictly related to the current order, the cur-
rently system event being executed.

Current Order – Sys Event

Continues on next page
Application manual - Production Framework 81
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

7 PFView - FlexPendant interface

Description

The description of any queued service order.Queued Orders – Next Service

The description of any queued non-service order.Queued Orders – Next

82 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

7 PFView - FlexPendant interface
Continued

8 Advanced: Custom components
8.1 Templates

Locating the templates
Templates for custom components will be installed under HOME:/PFTemplates/,
provided that the "Custom component templates" option was selected during
installation.
These templates contain empty RAPID routines with plenty of comments. They
serve both as skeleton files to get started and as documentation for the routines
that each component needs to implement.
Refer to Base framework RAPID data types and constants on page 63 for a
reference of the RAPID instructions available from the base framework.
There is one template for each component:

FileComponent

PFOrdersDef.sysOrder Library

PFEventsDef.sysEvent Library

PFOrderController.sysOrder Controller

PFLogger.sysLogger

PFProgress.sysProgress Tracer

Note

Since the template files are overwritten during system reset, always copy the
files to a safe location before proceeding with the implementation.

Application manual - Production Framework 83
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

8 Advanced: Custom components
8.1 Templates

8.2 Replacing a component

Removing the default component
A custom component cannot be installed at the same time as a corresponding
default component. Make sure that the default component option for the component
type being replaced is not selected in Installation Manager.
If already installed, it is necessary to deselect it in Installation Manager and run a
system reset.

Installing a custom component
As mentioned in each template, it is important that the name of the RAPID module
containing the component interface routines is the same as provided in the template.
If this is not the case, the base framework will not be able to find the routines.
It is not important from a framework point of view how a custom component is
loaded. However, it should be loaded on all tasks. The framework must be able to
see the module, which must have all required routines declared.
A common way of obtaining this is to use the Automatic Loading of Modules
(CAB_TASK_MODULES) type under the Controller (SYS) system parameters
database.

84 Application manual - Production Framework
3HAC085600-001 Revision: A

© Copyright 2023 ABB. All rights reserved.

8 Advanced: Custom components
8.2 Replacing a component

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
85
60

0
-0
0
1,
R
ev

A
,e
n

© Copyright 2023 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	1 Introduction to Production Framework
	1.1 System overview
	What is Production Framework?
	Base framework features
	Customization

	1.2 Orders
	Orders
	Service orders

	1.3 The production loop
	Traversing the states

	1.4 Events
	User events

	1.5 Component architecture
	Topology
	1.5.1 Component: Order Library
	Responsibilities

	1.5.2 Component: Event Library
	Responsibilities

	1.5.3 Component: Order Controller
	Responsibilities

	1.5.4 Component: Logger
	Responsibilities

	1.5.5 Component: Progress Tracer
	Responsibilities

	2 Installation
	2.1 Prerequisites
	RobotWare options
	The Production Framework add-in

	2.2 Installation options
	Add-in installation options

	3 Default components
	Overview
	3.1 Default Order Library
	Short description
	The partdata datatype
	The servicedata datatype
	Order validation

	3.2 Default Event Library
	Short description
	The eventdata datatype

	3.3 Default Order Controller
	Short description
	Configuration
	3.3.1 Input signals
	RunPart
	EnqueuePart
	RunService
	EnqueueService
	ClearQueue
	Abort
	OrderCode
	ResetStatus

	3.3.2 Output signals
	PartInQueue
	ServiceInQueue
	Idle
	Executing
	Success
	Invalid
	Refused
	RefusedReason
	Error
	EngineError
	Aborted
	ActiveOrder
	ActiveOrderIsService

	3.3.3 Example PLC interaction sequences
	Example 1: Executing a part, simplified
	Example 2: Executing a part, detailed
	More

	3.4 Default Logger
	Short description
	Configuration
	Log files
	Recommendations

	3.5 Default Progress Tracer
	Short description
	Log format

	4 Reference: Base framework RAPID instructions
	4.1 PFAbortCycle – Aborts the current cycle
	Usage
	Basic examples
	Example 1

	Arguments
	[\allTasks]

	Program execution
	Syntax

	4.2 PFClearQueue – Clears the order queue
	Usage
	Basic examples
	Example 1

	Arguments
	Syntax
	Related information

	4.3 PFCurrentOrder – Retrieves information about the current order
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	orderCode
	service
	[\queuedOrderCode]
	[\queuedServiceOrderCode]

	Syntax

	4.4 PFCurrentState – Retrieves information about the current production loop state
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Syntax
	Related information

	4.5 PFEngine – Starts the production loop
	Usage
	Basic examples
	Example 1

	Arguments
	Program execution
	Limitations
	Error handling
	Syntax

	4.6 PFEngineError – Generates an engine error
	Usage
	Basic examples
	Example 1

	Arguments
	[\exitNow]
	errorCode
	msg

	Program execution
	Syntax
	Related information

	4.7 PFEngineErrorCode – Retrieves the last generated engine error code
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Syntax
	Related information

	4.8 PFExitEngine – Exits the production loop
	Usage
	Basic examples
	Example 1

	Arguments
	[\now]
	[\allTasks]

	Program execution
	Syntax

	4.9 PFIsAborted – Checks whether the current order is aborted
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Syntax

	4.10 PFLastOrderCompletion – Retrieves information about the latest order
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	[\orderCode]
	[\service]

	Syntax
	Related information

	4.11 PFLog – Logs a message
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	level
	msg
	NoNewLine

	Syntax
	Related information

	4.12 PFPlaceOrder – Places an order
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\searchOnly]
	[\validateOnly]
	[\allowQueue]
	orderCode
	service
	refusedReason

	Syntax
	Limitations
	Related information

	4.13 PFProgressReport – Generates a Progress Tracer report
	Usage
	Basic examples
	Example 1

	Arguments
	source
	report
	defaultTxt
	[\s1]
	[\s2]
	[\s3]
	[\s4]
	[\s5]
	[\s6]

	Syntax
	Related information

	5 Base framework RAPID data types and constants
	5.1 PFBaseState – Production loop state
	Usage
	Predefined data
	Characteristics
	Related information

	5.2 PFEventType – Event type for production loop / system events
	Usage
	Predefined data
	Characteristics
	Related information

	5.3 PFLogLevel – Log level for filtering logs
	Usage
	Predefined data
	Characteristics
	Related information

	5.4 PFOrderCompletionState – Completion state of last order placed
	Usage
	Predefined data
	Characteristics
	Related information

	5.5 PFProgressReportType – Identifier for progress reports
	Usage
	Predefined data
	Characteristics
	Related information

	5.6 PFProgressSource – Source of progress reports
	Usage
	Predefined data
	Characteristics
	Related information

	5.7 PFResult – General response data type
	Usage
	Predefined data
	Characteristics

	5.8 Engine error codes
	Overview
	Predefined error codes, base framework
	Predefined error codes, default Order Library

	6 Miscellaneous
	6.1 Running custom code when PFEngine is called
	PFInitEngineHook

	6.2 Running custom code before/after any event type
	PFApplictionPreEventHook and PFApplicationPostEventHook

	6.3 Setting Idle state cyclic event interval
	pfIdleCyclicEvInterval

	6.4 Disabling the Progress Tracer component
	pfBaseProgressEnabled

	7 PFView - FlexPendant interface
	Overview and prerequisites
	Available information in PFView

	8 Advanced: Custom components
	8.1 Templates
	Locating the templates

	8.2 Replacing a component
	Removing the default component
	Installing a custom component

